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~,~4 q-Renormalization Program 
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Received December 3, 1992 

A regularization scheme for quantum field theories given in a q-mutator algebra 
for the internal momentum space in a loop integration is constructed. We show 
Feynman integrals that are finite for q ~ 1 but diverse as q--, 1. Using this 
regularization scheme, we propose a renormalization program in q-mutator 
space (q-renormalization program) for the ~.~b 4 theory as an example, up to 
some one-loop diagrams. This work paves the way to obtaining physically 
measurable quantities from quantum field theories over spaces that neither 
commute nor anticommute. 

1. I N T R O D U C T I O N  

It is well known  that  for any quan tum field theory one can construct  
the Feynman  rules for calculating the Green 's  functions and S-matr ix  
elements in per turbat ion theory, but  for relativistic field theory one often 
finds infinities in the calculation o f  diagrams containing loops. These 
divergences will render the calculation meaningless. 

Renormal iza t ion is a prescription that  allows us consistently to isolate 
and remove all these infinities f rom the physically measurable quantities. 
However ,  we should remark that  the need for renormalizat ion is rather 
general and is not  unique to the relativistic field theories. 

In  any renormalizat ion p rogram one first introduces some appropr ia te  
regularization scheme so that  all divergent integrals are made  finite. Then 
we are free to manipulate  formally these quantities, which are divergent 
only if the regularization is removed.  

On  the other  hand,  there has been a good  deal o f  interest in recent 
years in the construct ion o f  quan tum group structures in integrable confor-  
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mal field theories and Chern-Simons holonomies (Smit, 1990; Guadagnini 
et al., 1990). In addition, the reexamination of the question, "Can the Pauli 
principle be violated by a tiny amount?," has led to experimental reviews 
and devices to report the small violation of the Pauli principle (Greenberg 
and Mohapatra, 1989a; Ramberg and Snow, 1990); theoretical formula- 
tions for models which have a small violation of the exclusion principle 
(Greenberg and Mohapatra, 1987, 1989b; Greenberg, 1990a) include infi- 
nite statistics constructed using q-mutator algebras that define a quantum 
group. 

Independently, some authors have been working in quantum field 
theories constructed over spaces that neither commute nor anticommute. In 
this way a new noncommutative geometric structure for quantum field 
theories (e.g., Yang-Mills model) developed in the generalized quantum 
context has been constructed (Connes, 1988, 1990a,b), among other things, 
to better explain de Broglie's symmetry (Bacry, 1990). 

Interesting reviews about the current generalized soliton theory show 
how such different subjects as Hopf algebras, quantum groups, knots, 
Jones polynomials, spin chains, Bose-Fermi equivalence, conformal field 
theory, quantum deformations, integrable lattice models, affine (Kac-  
Moody) Lie algebras, Virasoro algebras, strings, SUSY, and the Ising 
model are connected (BuUough and Timonen, 1990). 

Following the previous ideas, we think that a regularization scheme 
and a renormalization program based on a q-mutator space can be used to 
obtain physically measurable quantities from quantum field theories on a 
noncommutative differential geometry. 

In this paper we show a regularization scheme for any quantum field 
theory, applied to some one-loop graphs in 2~b 4 as an example (Section 2), 
and a renormalization program for these particular cases (Section 3). Our 
conclusions are given in Section 4. 

2. A q-REGULARIZATION SCHEME 

In this section we introduce a regularization scheme constructed in 
noncommutative geometry. 

Following an idea related to dimensional regularization, we assume a 
Haar weight as invariant integration over the Hopf *-algebra of the 
generalized noncommutative internal momentum space. This deformation 
is parameterized by q and reduces to the unregulated theory as q ~ 1. 

Whereas dimensional regularization involves the extension of the 
internal momentum space in the loop integration to n components with 
Re(n) < 4, q-regularization assumes q-mutator structure for the internal 
momentum space in the loop integration. For the first case the finite (and 
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n-dependent) Feynman integrals are made divergent when n ~ 4 ;  in the 
second case the Haar weights (deformed versions of Feynman integrals) are 
finite (and q dependent) at q # 1; by contrast, as q --. 1, divergences come 
out. 

We should remark that q is any element of a field and if q --* 1 we 
recover the usual differential geometry for the quantum field theory. 
Besides, it is well known (Fredenhagen, 1981) that for all cases where q # 1 
locality is lost, then a relativistic quantum field theory cannot be con- 
structed, but only a quantum mechanical one. For the case - 1 < q < 1, 
even if locality has been lost, the TCP theorem follows (Greenberg, 1990b). 

We do not concern ourselves with the lack of locality for the q-muta- 
tor momentum structure of the internal momentum space in the loop 
integration because it has nothing to do with the external momentum space 
(which is local) or any other measurable physical quantity. 

To compute the Haar weight, we should choose a basis o f  Cq. As an 
algebra of the internal momentum space we define Cq as the complex 
algebra generated by 1 and the n generators lm, l < m < n, with relations 

~k is an even number 
J j  is an odd number 

[lk'lj] = ilj X/(1--q) I n = k + j  (2.1) 

[ / = ~ / -  1 

such that as q ~ 1 the algebra becomes the commutative algebra of 
functions on C" generated by lm. We transform this into a *-algebra via 

[ k  is an even number 
l~ = tk, U = ljq '/2 "~ j is an odd number (2.2) 

Li=,/-1 
For every finite-dimensional Hopf  C* algebra (or Hopf -von  Neu- 

mann algebra) there is an invariant integration, the Haar weight ~, unique 
up to a normalization. 

We choose a basis of Cq of the form 

B al'''a. -~ e i'~tl . . .  e ia ' l ' ,  a,,, ~ C  (complex numbers) (2.3) 

and the dual basis Da'~...,,~ eqC" defined via 

B a ,  . . . . .  Da.i...an = 6(a] -- a , ) . . .  6(a',, -- a,), a',, ~C  (2.4) 

where the 6 functions have been defined with respect to the usual Lebesgue 
integration. 

Then we propose, up to a normalization, the following: 

f B  a, . . . . . .  f d a l . . . d a , ( B " ' S 2 B " ' ) D a l . . . a ; ,  ..... ..... (2.5) 
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where S 2 is defined such that 

~k is an even number 
SZlk = Ik and S21j = q-II:  [ j  is an odd number (2.6) 

Then, from (2.1) and (2.4)-(2.6) it follows that 

f B'q . . . . . .  f da' ' ' ' d a "  I-I6(a'k-(a'k+ak))i 

x I-I 6(a~ - (a~q -1 + a:e-a~,/(l--q))) (2.7) 
J 

where k is an even number and j is an odd one. 
Now, we can calculate the integral of  a general element f in the 

internal momentum space Cq if we assume 

f - ' r c t : l  l:).= f dal da, f ' (a l  ..... an)O al (2.8) - - . j  I . k ,  . . . . . .  

where 

f ' (a l  . . .  a,) = (2n) -2 .t dbl . . . db,fCt(bl . . . b,)e-ibwl . . . e-ib'a" 

is the Fourier transform of the normal ordered form for the function of the 
generators (putting lk to the left, where k is an even number). 

Then 

f f  = f da'l...da; VIea'k,/(1-q)f'(aj(l~ --q-i,ea'k'/(1-q)) (2.9, 

for all k an even number and j an odd one. 
Changing the order of the integration, we have (up to normalization) 

f f  =[2~rfi(O,]~ f ~ d a j f ' ( O , a ' j ( 1 - q - ' ) ,  (2.10) 

for all j an odd number. 
As q ~ 1 we obtain [2z~6(0)] (a normalization) times the ordinary 

f f = (2zo-"  f db, . . . db,,f~'(b, . . . b,,) (2.11) 

which diverges, on the contrary, at q ~ 1 and assuming proper analycity 
and decay o f f '  to allow rotation of the contour, j of the 2r~6(0) factors are 
replaced by (1 - q -  ~)-: and an integral, which can be finite for suitable f 

Another basis for Cq and examples have been studied recently (Majid, 
1990). 
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We shall use the simple ,~4 theory as an example to illustrate this 
regularization scheme. The Lagrangian density is separated into free and 
interacting parts, 

Z~a = ~'0 + Z~al (2.12) 

1 
-~o = ~ [(GOo) ~ - ~ r  ~] (2.13) 

~'0 = ,p4 ( 2 .1 4 )  

The propagator and the vertex of this theory are displayed in Fig. 1. 
We will concentrate on the one-particle-irreducible (1PI) diagrams; 

they are the Feynman diagrams that cannot be disconnected by cutting any 
one internal line. Therefore we define the 1PI Green's functions F, which 
have contributions coming from 1PI diagrams only. 

We select only 1PI diagrams because any one-particle-reducible dia- 
gram can be decomposed into 1PI diagrams without further loop integra- 
tion. If we know how to take care of the divergences of 1PI diagrams, we 
will also be able to handle reducible diagrams. 

Since there is no divergence in the tree (zero-loop) diagrams, we 
illustrate our calculation with the one-loop divergent 1PI diagrams in the 
2~b4 theory of Fig. 2. 

Figure 2 shows the vertex corrections with contributions given by 

Fa= F(s) (--i)~~ ~ d4l i i (2.15) 
= 2 J ( - ~ ) 4 ( l - p ) 2 2 # 2 + i e l Z - p 2 + i e  

F b = F(t); F c = F(u) (2.16) 

where 

s =p2 = (Pl +P2) 2, t = (Pl -P3)  2, u = (Pl -P4)  2 (2.17) 

are the Mandelstam variables. These corrections diverge logarithmically. 
If we consider the (2.15) and (2.16) integrals as Haar weights over the 

(2.3) basis of C 4 (noncommutative internal momentum space) defined by 

i / -iA 
) 2 2 + ,  c o P-//o I 

Fig. 1. 
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P3 P4 

;( 
P~ Pa 

(a) 

P3 P4 

PI Pa 

(b) 

Fig. 2. 

P:1 P4 

Pt Pe 
(e) 

(2.10), we obtain 

226(0) 
r q  = rq(,i,) 2(27r) 3 

j {p~ + [/5(1 - q - ' )  
X 

_ p j ] z  _ liE + ie}{[lj  (1 -- q - ' ) l  2 --/-to: + ie} 

(2.18) 

Fbq = Fq(t ) ,  Fq = Fq(U) (2.19) 

where s, t, and u are the Mandelstam variables, l~ are the odd components 
of  the dual internal momentum in noncommutative geometry, and P k ( P j )  
are the even (odd) components of  the external momentum in the well- 
known commutative space-time. 

Unless q = 1, (2.18) and (2.19) are finite; thus, we have a regulariza- 
tion scheme. We should remark that the limit q-+ 1 applied to (2.18) and 
(2.19), quadratically divergent, does not lead straightforwardly to (2.15) 
and (2.16) because in this case our Haar weight formulation has no sense, 
which means that (2.1) reduces to the standard commutative case. 

3. A q-RENORMALIZATION PROGRAM 

To formulate the (2.18) and (2.19) Haar weights we have used the 
(2.3) basis for the noncommutative internal momentum space C 4. Let us 
assume another B al ..... Dal. . .a ~ basis (dual basis) set, such that we have 
general expressions for Fq, Fbq, and Fq given by 

[ dJ/  
Fq = Fq(s) = 2(2rt) - ' - - - ~  ~ [a 2 - (bl  5 - c):  - d](b215 - d )  (3.1) 

Fq b = Fq(t) and Fq = Fq(u) (3.2) 
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where s, t, and u are the Mandels tam variables and 1~ are the odd 
components  o f  the dual internal momen tum in noncommuta t ive  geometry.  

Of  course, (3.1) and (3.2) reduce to (2.18) and (2.19) in the case 
a 2 = p 2 ,  b = (1 - q - ; ) ,  c = & ,  d = p02 - ie, where pk (Ps) are the even (odd)  
components  o f  the external  m o m e n t u m  in the usual commutat ive  space- 
time. We should remark  that, for  the general case, the set {a, b, c, d} always 
includes some functionals o f  the Mandels tam variables. 

Solving (3.1) and (3.2), we obtain the following results. 
Case I. e > c 2, with e = c 2 + a 2 - -  d: 

-2~ { 2 c 2 - d - e n  
Fq = Fq(s) = 2(21r)ab[( d + e) 2 _ 4c2d ] 2c In b + (e - c2) 1/2 

[c]} 
+ c In( - 1) ~ - -~  + (e - c2) m t an-1  (e - -  c -~) 1/2 (3.3) 

where 

and 

z = - [(d + e ) / 2x /d  + c] (3.4) 

r~q = rq( t ) ,  rq = rq(u) (3.5) 

for  the corresponding Mandels tam variables. 
Case II. e < c 2, with e = c 2 + a 2 - d: 

-2~176 [ 
r~ = rq(~) - 2(2~)3b[(d?7~_ 4c~a ] 2c In b + ~ I n ( -  1) z eb:d 

2c z - d - e . - b e  - b(c:  - e) 1/2q (3.6) 
+ ~ - - e ) - i 7  2- In ---~-c + ' b - ~  e)l/2J 

It is possible to prove that,  if  in the limit q-- .  1, 

( ( p ,  +p~)  = p o  for  r~  

e ~ 4 #  2, C ~ J ( p l - - p 3 ) = p b  for  Fq b (3.7) 

[ ( p l - P 4 ) = p c  for  F~ 

and b, d are defined in such a way that  we have the following results: 
Case I. e > cZ: 

l n b  [ n ( 4 p ~ - P 2 ) I / 2 - 2 p ] ( 2 p 2 - d - 4 # 2 )  1 . . . . .  4/~ 2 
= 8p(4#02_p2 ) - ~ m t - a )  y (3.8a) 

8p(4/~ - p 2 )  2p 2 - d - 41~2o 
d + In 

n(4#2 _p2)1/2 _ 2p (d + 4.o2) 2 - 4pEd 

8p(4/~o 2 _ p 2 )  In - 2 2 6 ( 0 ) ( -  1)~/4p(41~2)~/4 (3.8b) 
= (2P 2 - 4po 2) - rc(4/~2 _ p2),/2 _ 2p n(4/~ 2 _ p2) 



506 Rodriguez-Romo 

Case II. e < r 

l n b -  - ( 2 p E - d - 4 # ~ ) ( 2 + i ~ r )  ~ l n ( -  1) z4#~ (3.9a) 
4(p 2 - 4#~) d 

d - 4(p2 - 4#~ In 2p 2 - d - 4#o 2 
2 + in [(d + 4#02) z - 4p2d]d 1/4 

= (2p 2 - 4#0 z) + 4(p2 - 4#2) In -2226(0)P(  - 1)z/4(4#2)1/4 (3.9b) 
2 + in zc(p 2 - 4# 2) 

where p can be p,,, Pb, or Pc according to the Fq chosen; then, (3.1) and 
(3.2) transform to the renormalized 1PI Green's functions reported in the 
literature for the .~b 4 one-loop diagrams depicted in Fig. 2 (Cheng and Li, 
1984). 

4. DISCUSSION 

In this paper we have presented some ideas and calculations that lead 
us to propose a general q-regularization scheme and q-renormalization 
program for quantum field theories, using a noncommutative structure for 
the internal momentum space in the loop integration. 

We use s o m e  )~t~ 4 one-loop graphs as examples to show our procedure. 
We consider the extension of usual Feynman integrals to Haar  weights 
defined over noncommutative internal momentum space in the loop, but 
the physically significant external momentum space is the usual one; thus, 
all the consequences of  our noncommutative assumption (for instance, lack 
of  locality) are of no concern from the experimental point of view. 

On the other hand, our procedure is strongly dependent on the basis 
set chosen for Cq and its dual. This means that we should handle this 
property in order to get well-behaved Feynman integrals for all n-loop 
divergent 1PI diagrams in the 2th 4 theory. 

For  further work, we consider removing the infinities of some theories 
constructed on noncommutative geometry. 
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